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The stability of linear multi-degree-of-freedom stable
potential systems with multiple natural frequencies
under the action of infinitesimal circulatory forces
is considered. Contrary to the received view that
such systems are inherently unstable, a careful study
shows that such systems have a much more complex
behaviour than previously recognized and could
exhibit an alternation of stability and instability
that depends on the structure of the potential
system and its interaction with the circulatory forces.
The conditions under which stability or instability
ensues and the nature of this alternation in stability
are explicitly obtained. In low-dimensional stable
potential systems, when the coefficients of the
circulatory forces are proportional to an arbitrarily
small scalar parameter, all the circulatory forces that
cause flutter instability are described.

1. Introduction
The area of stability of dynamical systems is at the
crossroads of physics, mathematics and engineering.
The physicist is interested in instabilities that arise
in nature, the mathematician’s interest lies in exact
mathematical formulations that provide conditions
under which instabilities occur, and the engineer is
interested in the design of engineered systems that
are stable. The stability of linear potential systems
in the presence of positional circulatory forces, in a
general setting, was first brought to attention by the
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outstanding work of Merkin in the 1950s in which he demonstrated that when all the vibrational
frequencies of such a system are identical, instability ensues [1]. This foundational result in the
theory of stability was followed by the observation that when the potential matrix (that describes
the potential forces) and the circulatory matrix (that describes the circulatory forces) commute
then instability follows [2]. More recently, it was discovered that such commutation can occur
if and only if the potential matrix has at least one multiple frequency of vibration and that just
one such multiple frequency of vibration of a potential system is sufficient to make it unstable
under infinitesimal circulatory perturbative matrices that commute with the potential matrix [3].
Such a situation of having multiple vibrational frequencies can, and often does, arise in complex
multi-degree-of-freedom (MDOF) systems such as spacecraft and building structures in which,
say, the fourth bending frequency coincides with the second torsional frequency of vibration of
the structure.

Though the subject has been investigated for several decades, our knowledge of the conditions
for stability and instability of linear potential systems subjected to positional perturbative forces
is apparently still far from complete. This is highlighted by the recent observation that such
instabilities can be induced even when the potential and perturbatory matrices do not commute
and are not necessarily circulatory [4]. Routes to instability caused by such positional forces,
both finite and infinitesimal, are shown to be dependent on the interaction of the positional
perturbative matrices (forces) and the potential matrix through the potential matrix’s eigen
structure. The removal of the necessity of delving into the eigen structure of potential matrices has
only recently been accomplished for MDOF systems subjected to circulatory forces. An instability
criterion that uses instead the ‘gross’ property of the rank of the products of potential and
perturbatory matrices has been obtained, thereby providing a further generalization of Merkin’s
classical result [5].

The present paper considers a general linear MDOF potential system that has only a single
multiple frequency of vibration—something not too uncommon in complex large-scale systems
such as spacecraft, and building structures subjected to strong earthquake ground shaking—and
considers the effect of general infinitesimal positional circulatory perturbations on it. As opposed
to several studies that deal with low-dimensional systems that have typically two to four degrees
of freedom, we consider a general MDOF potential system and explore its stability under
circulatory forces.

It has been generally believed hereto that such systems, albeit simple since we do not consider
other types of forces like damping, are ‘all’ unstable [6,7]. The analysis presented herein, however,
shows that their stability/instability has far greater complexity than has been understood to
date. It is shown that depending on the nature and structure of the potential system, it could
remain stable or become unstable, and explicit conditions when such stability/instability occurs
are obtained. Most vibratory systems are, of course, acted upon by additional forces, such as,
damping and gyroscopic forces. Our lack of basic understanding of MDOF potential systems
in the absence of these additional forces, i.e. when subjected only to infinitesimal circulatory
positional forces, has prompted us, as a first step, to not include their effects in this sequel.
Much like the classical foundational result first obtained by Merkin, which is now one of the
cornerstones of stability theory (see Krechtnikov & Marsden [8]) the results obtained herein are
thus seen to be, in a sense, fundamental, providing a sort of a baseline from which future studies
on the stability of MDOF potential systems that include other types of additional forces can be
addressed.

We begin by considering the potential system described by the equation

M̃q̈ + K̃q = 0, (1.1)

where the n by n matrix M̃ is a positive definite matrix and K̃ is a real symmetric matrix.
The n-vector of generalized coordinates is denoted by q, and the dots indicate differentiation.
Potential systems are of considerable importance in physics and engineering because most real-
life systems, those that occur naturally and those that are engineered, are usually modelled as
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potential systems. The addition of a perturbing circulatory force to such a system results in the
system described by the equation

M̃q̈ + K̃q + εÑq = 0, (1.2)

where Ñ is a real constant skew-symmetric matrix and ε is a dimensionless parameter which is
introduced to characterize the intensity of the circulatory force described by −Ñq. Making the
transformation x = M̃1/2q, where the exponent ½ indicates the unique positive definite square
root of the matrix M̃, and premultiplying equations (1.1) and (1.2) by M̃−1/2

, we get the following
equations that describe the potential system and the perturbed potential system

ẍ + Kx = 0 (1.3)

and

ẍ + Kx + εNx = 0, (1.4)

where the symmetric matrix K = M̃−1/2K̃M̃−1/2 and skew-symmetric N = M̃−1/2ÑM̃−1/2. Clearly,
system (1.2) is equivalent to system (1.4), and we shall from here on consider this system.

It is well-known that the potential system is stable, i.e. every solution x(t) of equation (1.3) is
bounded for all non-negative t, if and only if the potential matrix K is positive definite (K > 0), and
in what follows, we will assume that this condition is satisfied. On the other hand, the following
is known about the stability of system (1.4).

(a) The system (1.4) is unstable by flutter, i.e. there exists oscillating motion with a growing
amplitude, if ε2||N||2F > ||K||2F − 1/n(TraceK)2, where ||.||F denotes the Frobenius norm [9]. This
says that the introduction of sufficiently large circulatory forces into a stable potential system
always destroys its stability.

(b) If

|ε|||N||2 <
1
2

min
1≤i�=j≤n

|λi − λj|, (1.5)

where λ1, . . . , λn are the eigenvalues of the potential matrix K and ||.||2 denotes the spectral norm,
then the system (1.4) is stable [10]. This means that a stable potential system all of whose natural
frequencies are distinct remains stable after the addition of sufficiently small circulatory forces
(also, see [11]).

In the case of multiple natural frequencies of a potential system, the following has recently
been formulated.

(c) Let the potential matrix K have a single eigenvalue λ0 with multiplicity m ≥ 2, and
let T = [Tp|Tr] be an orthogonal matrix, where the n × p submatrix Tp contains any 2 ≤ p ≤ m
eigenvectors of K corresponding to the multiple eigenvalue, and the n × r submatrix Tr contains
the remainder (i.e. r = n − p) of the eigenvectors of K. Then, if the following conditions hold

TT
p NTp �= 0, TT

p NTr = 0, (1.6)

the system (1.4) is unstable by flutter [4]. This result contains, as a special case, the famous
Merkin’s theorem [1], which assumes the commutativity of the matrices K and N [2,3,12]. It
should be noted that in applications, the condition given in (1.6) relies on an analysis of the eigen
structure of the matrix K, and an appropriate choice of the orthonormal eigenvectors that are to be
included in the submatrix Tp [5]. Recently, a rank condition that is equivalent to (1.6) but obviates
the need to examine the eigen structure and to pick the proper orthonormal vectors in Tp has been
developed [5].

It should be noted that under conditions (1.6) the instability follows for every ε �= 0, i.e. for
circulatory forces of arbitrary intensities, including, of course, intensities that are infinitesimally
small. The following simple example shows that a system (1.4) with multiple natural frequencies
that do not satisfy the conditions of the above assertion can remain stable when the circulatory
forces are sufficiently small.
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Example 1.1. Let

K = diag(1, 1, 3) and N =

⎛
⎜⎝ 0 0 1

0 0 1
−1 −1 0

⎞
⎟⎠ . (1.7)

For this example, clearly, p = m = 2 and

TT
p NTp =

[
0 0
0 0

]
, TT

p NTr =
[

1
1

]
,

and, consequently, conditions (1.6) are not satisfied. On the other hand, it is easy to see that the
characteristic equation of this system has the following roots:

±i, ±i
√

2 ±
√

1 − 2ε2,

which all are purely imaginary and distinct if 1 − 2ε2 > 0. Hence the systems (1.4) and (1.7) is
stable if |ε| < √

2/2.
The following question, which first was clearly formulated by Udwadia [3], arises: when do

arbitrarily small circulatory forces cause flutter instability in stable linear potential systems that
have multiple natural frequencies?

This question is not only of importance in itself, but has important ramifications in real-life
engineering systems [4]. A partial answer to this question is given by criterion (c), which, we
emphasize again, includes circulatory forces of arbitrary intensities, not only intensities that are
small and/or infinitesimal. The following example clearly shows that the class of infinitesimal
circulatory forces causing instability is wider than that proposed by the aforementioned criterion.

Example 1.2. Let

K = diag(1, 1, 4) and N =

⎛
⎜⎝ 0 1 6

−1 0 0
−6 0 0

⎞
⎟⎠ . (1.8)

For this example, clearly, p = m = 2 and

TT
p NTp =

[
0 1

−1 0

]
, TT

p NTr =
[

6
0

]
,

and, consequently, the second condition of (1.6) is not satisfied. On the other hand, it can be
shown, for example, using the criterion in [13], that system (1.4), (1.8) is unstable and exhibits
flutter if |ε| ∈ (0, a) ∪ (b, ∞), and stable if |ε| ∈ (a, b), where a = 0.157 . . . and b = 0.253 . . . .

The precise formulation of the stability problem that this article addresses can then be stated
as follows.

Problem. In system (1.4), let the positive definite potential matrix K have one multiple
eigenvalue of multiplicity m ≥ 2. Under what conditions is system (1.4) unstable (stable) for
arbitrarily small non-zero |ε|?

One way of approaching this problem is by studying the stability for systems of the form
ẍ + Px = 0, where the matrix P is non-symmetric and depends on parameters, using bifurcation
analysis, based on the first approximation of perturbed eigenvalues [7,14]. According to this point
of view, points in the parameter space at which the system has multiple imaginary eigenvalues
correspond to singularities of the stability boundary. It is shown that for a double semi-simple
imaginary eigenvalue the region of flutter instability lies inside a cone with the apex at the
singular point [14]. More recently, it has been shown that when the parameters move along the
stability boundary the second approximation must also be considered [15].

The approach developed in this paper is based on classical perturbation theory. We assume that
a small parameter ε separates the pure circulatory (skew-symmetric) matrix from the potential
matrix and take into account, when necessary, higher order approximations (up to order 5). The
approach places no limits on the multiplicity of the natural frequencies. It is shown in §2 that this
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perturbational approach provides an answer to the question posed. In §3, we use these results for
a dynamical system with less than 5 degrees of freedom (n < 5) and obtain all skew-symmetric
matrices N that cause flutter instability in potential systems with multiple eigenvalues in which
the circulatory forces are described as in (1.4) by εNq where |ε| is arbitrarily small.

2. Main results
We begin with a few statements that are relevant to our later considerations.

Lemma 2.1. For some value of the real parameter ε, the system (1.4) is stable if and only if all
eigenvalues of the matrix K + εN are positive and simple or semi-simple (i.e. the number of linearly
independent eigenvectors associated with a multiple eigenvalue of the matrix K + εN coincides with its
algebraic multiplicity).

Proof. See, for example, [14]. �

Remark 2.2. Since K > 0, the system cannot be unstable due to divergence, i.e. if the system is
unstable, then it is flutter unstable with an exponential or polynomial growing amplitude.

Lemma 2.3. Let λi > 0 be eigenvalues of the potential matrix K. Suppose that λ1 = λ2 = · · · = λm = λ0,
m ≥ 2, and that the other eigenvalues λm+1, . . . , λn are simple. Then, in some neighbourhood of ε= 0,
the matrix K + εN has m eigenvalues μj(ε) such that μj(0) = λ0, j = 1, . . . , m, and n – m simple real and
positive eigenvalues μm+k(ε) such that μm+k(0) = λm+k, k = 1, . . . , n – m.

Proof. It follows from the Bauer–Fike localization theorems (see, for example [10, Lemma 1]).
�

Therefore for small enough |ε|, the nature of m eigenvalues μj(ε) of the matrix K + εN resulting
from the ‘splitting’ of the multiple eigenvalue λ0 (μj(0) = λ0, j = 1, . . . , m) determines the character
of the stability of the system under consideration. More precisely, a direct consequence of Lemma
2.1 and Lemma 2.3 is the following assertion.

Lemma 2.4. Suppose that the positive definite potential matrix K has one eigenvalue λ0 of multiplicity
m ≥ 2, and that its other eigenvalues are simple. If all eigenvalues μj(ε) of the matrix K + εN, such that
μj(0) = λ0, are real and simple or semi-simple in some neighbourhood of ε = 0, then the system remains
stable for small enough |ε|; otherwise it will be unstable by flutter for arbitrarily small non-zero |ε|.

We suppose, as in the above, that the potential matrix K has one eigenvalue λ0 of multiplicity
m ≥ 2, and that the other eigenvalues are simple. Let T = [Tm|Tn−m] be an orthogonal matrix,
where the n × m submatrix Tm contains m eigenvectors of K corresponding to the eigenvalue
λ0, and the n × (n − m) submatrix Tn−m contains the remainder n − m of the eigenvectors of K
corresponding to the eigenvalues λi �= λ0, i = m + 1, . . . , n. The orthogonal matrix T reduces K and
N to the forms

Λ̂ = TTKT = diag(λ0Im, Λn−m), N̂ = TTNT =
[

TT
m

TT
n−m

]
[N][Tm|Tn−m,] :=

[
N̂11 N̂12

−N̂T
12 N̂22

]
, (2.1)

where the (n − m)-dimensional diagonal matrix Λn−m = TT
n−mKTn−m contains all the eigenvalues

of K that are distinct from λ0, and N̂11 = TT
mNTm = −N̂T

11, N̂12 = TT
mNTn−m, N̂22 = TT

n−mNTn−m =
−N̂T

22. Let μ(ε) be an eigenvalue of the matrix (Λ̂ + εN̂) for which μ(0) = λ0 and let w(ε) be
corresponding eigenvector, i.e.

(Λ̂ + εN̂)w = μw. (2.2)

For the Taylor series of μ(ε) and w(ε) about ε = 0, we write

μ(ε) = λ0 + ελ(1) + ε2λ(2) + ε3λ(3) + · · · (2.3)

and
w(ε) = w(0) + εw(1) + ε2w(2) + · · · . (2.4)
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Substituting (2.3) and (2.4) into (2.2) and collecting coefficients of equal powers of ε, we find

{ε0, ε1} (Λ̂ − λ0I)w(0) = 0, (Λ̂ − λ0I)w(1) = (λ(1)I − N̂)w(0), (2.5)

{ε2} (Λ̂ − λ0I)w(2) = (λ(1)I − N̂)w(1) + λ(2)w(0), (2.6)

{ε3} (Λ̂ − λ0I)w(3) = (λ(1)I − N̂)w(2) + λ(2)w(1) + λ(3)w(0), (2.7)

{ε4} (Λ̂ − λ0I)w(4) = (λ(1)I − N̂)w(3) + λ(2)w(2) + λ(3)w(1) + λ(4)w(0) (2.8)

and {ε5} (Λ̂ − λ0I)w(5) = (λ(1)I − N̂)w(4) + λ(2)w(3) + λ(3)w(2) + λ(4)w(1) + λ(5)w(0), (2.9)

or more succinctly as

{εk} (Λ̂ − λ0I)w(k) = (λ(1)I − N̂)w(k−1) +
k∑

j=2

λ( j)w(k−j) k = 2, 3, . . . . (2.10)

We now denote w( j) = [ w̄( j)T w̃( j)T ]T, where w̄( j) and w̃( j) are m and (n − m) dimensional vectors,
respectively, and we consider the pair of equations given in (2.5), which can be rewritten as[

0 0
0 Λn−m − λ0In−m

] [
w̄(0)

w̃(0)

]
=

[
0
0

]
(2.11)

and [
0 0
0 Λn−m − λ0I

] [
w̄(1)

w̃(1)

]
=

[
λ(1)I − N̂11 −N̂12

N̂T
12 λ(1)I − N̂22

] [
w̄(0)

w̃(0)

]
. (2.12)

Then, from the last (n − m) equations in (2.11), we get (Λn−m − λ0In−m)w̃(0) = 0 from which it
follows that w̃(0) = 0. Also, from the first m and the last (n − m) equations in (2.5), we get,
respectively, (N̂11 − λ(1)Im)w̄(0) = 0, and (Λn−m − λ0In−m)w̃(1) = N̂T

12w̄(0) since w̃(0) = 0. Thus (2.11)
and (2.12) yield the relations

w̃(0) = 0, w̃(1) = DN̂T
12w̄(0), and (N̂11 − λ(1)Im)w̄(0) = 0, (2.13)

where the diagonal matrix D = (Λn−m − λ0In−m)−1.
It follows from the last relation in (2.13) that λ(1) is an eigenvalue of the m by m skew-symmetric

matrix N̂11 = TT
mNTm. If N̂11 �= 0, then it has at least one pair of imaginary eigenvalues of the form

± iν, with ν > 0, and, in view of (2.3), in some neighbourhood of ε= 0, the matrix Λ̂ + εN̂ (and, of
course, K + εN) has at least one complex conjugate pair of eigenvalues of the form

μ(ε) = λ0 ± iεν + o(ε). (2.14)

This, taking into account lemma 2.4, leads to our first result.

Result 2.5. The addition of a circulatory matrix N to the n degree of freedom potential system described
by equation (1.3) that has an eigenvalue λ0 of multiplicity m with 2 ≤ m ≤ n will cause the system described
by equation (1.4) to become unstable by flutter for arbitrarily small non-zero values of |ε| if

N̂11 = TT
mNTm �= 0, (2.15)

where the columns of the n by m matrix Tm are orthonormal eigenvectors of K corresponding to the multiple
eigenvalue λ0. That is, the work done by the circulatory force under displacements in the subspace spanned
by the columns of Tm is non-zero. The order of the eigenvectors in the matrix Tm is arbitrary.

It is interesting to note that the introduction of a circulatory force to the potential system can
add energy to it and can make it unstable. Indeed, the rate at which the circulatory force −εNx
is doing work is given by εxTNẋ. Along a mode eλtw of the system (a solution of equation (1.4)),
where λ = α + iβ and w = X + iY with X, Y ∈ 	n, this quantity becomes εβe2αtYTNX. Taking for
λ a square root of −μ, where μ is determined by equation (2.14), the last expression reduces to
the form εν

√
λ0e2αt(1 + O(ε)), where iν is a non-zero eigenvalue of the skew-symmetric matrix
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in equation (2.15) and α = O(ε). This confirms that under conditions of result 2.5, the system
performs an unbounded oscillatory motion along which the energy in the system grows.

Remark 2.6. In the case m = 2, this result may also be established by an application of the
results given in [14, Chapter 4], concerning the singularities on the stability boundary of a multi-
parameter circulatory system (see also [6]). Also, we note that the expansion (2.14) can be obtained
by an application of a classical result for perturbation of a semi-simple multiple eigenvalue of an
arbitrary matrix [16, Theorem 2.5], [17, Section 11.7, Theorem 1]; see also [7, Theorem 2.7].

Remark 2.7. It is easy to generalize result 2.5 to the case when the matrix K has several
multiple eigenvalues. Indeed, let λ1, . . . , λkbe eigenvalues of K with multiplicities m1, . . . , mk ,

respectively, mj ≥ 1, m1 + · · · + mk = n. Let T = [Tm1 |Tm2 | . . . |Tmk ] be an orthogonal matrix, where
the n × mj submatrix Tmj contains mj eigenvectors of K corresponding to the eigenvalue λj of
multiplicity mj. Then, the system described by equation (1.4) is unstable by flutter for arbitrarily
small non-zero values of |ε| if at least one of the following matrices

TT
mj

NTmj , j = 1, . . . , k,

is non-zero.

In what follows, we consider the case when

N̂11 = TT
mNTm = 0. (2.16)

Then, it follows from (2.13) that λ(1) = 0 because w̄(0) �= 0. On the other hand, putting (2.16) and
λ(1) = 0 in (2.6) and taking into account of (2.13), we get[

0 0
0 Λn−m − λ0In−m

] [
w̄(2)

w̃(2)

]
=

[
0 −N̂12

N̂T
12 −N̂22

] [
w̄(1)

w̃(1)

]
+ λ(2)

[
w̄(0)

0

]
, (2.17)

whose first m equations give N̂12w̃(1) = N̂12DN̂T
12w̄(0) = λ(2)w̄(0). The last (n − m) equations in (2.17)

give w̃(2) = DN̂T
12w̄(1) − DN̂22w̃(1), so that we get the two relations

(S − λ(2)Im)w̄(0) = 0 and w̃(2) = DN̂T
12w̄(1) − DN̂22w̃(1), (2.18)

in which the m by m matrix

S = ST = N̂12DN̂T
12. (2.19)

It follows from (2.18) that λ(2) is an eigenvalue of the symmetric matrix S.
If the matrix S has all distinct eigenvalues λ

(2)
i , i = 1, . . . , m, then in some neighbourhood of

ε = 0, the matrix Λ̂ + εN̂ has m real distinct eigenvalues of the forms

μi(ε) = λ0 + ε2λ
(2)
i + o(ε2), i = 1, . . . , m. (2.20)

Thus, in view of Lemma 2.4, we have the following result.

Result 2.8. If N̂11 = 0 and all eigenvalues of the symmetric matrix S in (2.19) are distinct, then the
system described by equation (1.4) is stable for arbitrarily small values of |ε|.

Lemma 2.9. When N̂11 = 0 we can generalize (2.18) to

(S − λ(2)Im)w̄(r−2) = N̂12DN̂22w̃(r−2) − N̂12D
r−1∑
j=2

λ( j)w̃(r−1−j) +
r∑

j=3

λ( j)w̄(r−j), r = 3, 4, . . . (2.21)

and

w̃(r) = DN̂T
12w̄(r−1) − DN̂22w̃(r−1) + D

r∑
j=2

λ( j)w̃(r−j), r = 2, 3, . . . . (2.22)
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Proof. Equation (2.10) with k = r > 2 gives[
0 0
0 Λn−m − λ0In−m

] [
w̄(r)

w̃(r)

]
=

[
0 −N̂12

N̂T
12 −N̂22

] [
w̄(r−1)

w̃(r−1)

]
+

r∑
j=2

λ( j)

[
w̄(r−j)

w̃(r−j)

]
, (2.23)

whose last (n − m) equations and first m equations yield, respectively, result in (2.22) and in

− N̂12w̃(r−1) +
r∑

j=2

λ( j)w̄(r−j) = 0. (2.24)

But from (2.22), by setting r → r − 1, we get

w̃(r−1) = DN̂T
12w̄(r−2) − DN̂22w̃(r−2) + D

r−1∑
j=2

λ( j)w̃(r−1−j), r = 3, 4, . . . . (2.25)

Substituting this expression in (2.24) and using (2.19) gives

−N̂12DN̂T
12w̄(r−2) + λ(2)w̄(r−2) + N̂12DN̂22w̃(r−2) − N̂12D

r−1∑
j=2

λ( j)w̃(r−1−j) +
r∑

j=3

λ( j)w̄(r−j) = 0,

which yields (2.21). �

Now suppose that the matrix S has a single multiple eigenvalue s0 of multiplicity r, 2 ≤ r ≤ m.
We put λ(2) = s0 in (2.18), which becomes

(S − s0Im)w̄(0) = 0. (2.26)

Using (2.21) for r = 3 and noting (2.13), we get (S − λ(2)Im)w̄(1) = N̂12DN̂22w̃(1) + λ(3)w̄(0), so that

(S − s0Im)w̄(1) = (G + λ(3)Im)w̄(0), (2.27)

where the m by m skew-symmetric matrix

G = −GT = N̂12DN̂22DN̂T
12. (2.28)

Let T̃ = [T̃r|T̃m−r] be an m by m orthogonal matrix, where the m × r submatrix T̃r contains r
eigenvectors of the symmetric m by m matrix S corresponding to the multiple eigenvalue s0, and
the m × (m − r) submatrix T̃m−r contains the remainder m − r of the eigenvectors of S. The matrix
T̃ transforms matrices (2.19) and (2.28) to the forms

Ŝ = T̃TST̃ = diag(s0Ir, Λ̄m−r), Ĝ = T̃TGT̃ =
[

Ĝ11 Ĝ12

−ĜT
12 Ĝ22

]
, (2.29)

where Λ̄m−r = T̃T
m−rST̃m−r and Ĝ11 = T̃T

r GT̃r, Ĝ12 = T̃T
r GT̃m−r, Ĝ22 = T̃T

m−rGT̃m−r. The skew-
symmetric matrix Ĝ11 is r by r. Setting w̄( j) = T̃[ū( j)T ũ( j)T]T, where ū( j) and ũ( j) are r and (m − r)
dimensional vectors, respectively, in (2.26) and (2.27) and premultiplying these by T̃T we get[

0 0
0 Λ̄m−r − s0Im−r

] [
ū(0)

ũ(0)

]
= 0, (2.30)

and [
0 0
0 Λ̄m−r − s0Im−r

][
ū(1)

ũ(1)

]
=

[
Ĝ11 + λ(3)Ir Ĝ12

−ĜT
12 Ĝ22 + λ(3)Im−r

] [
ū(0)

ũ(0)

]
. (2.31)

Note that (2.30) and (2.31) have the same ’structure’ as (2.11) and (2.12), and in a manner similar
to what we got in (2.13), we get

ũ(0) = 0, ũ(1) = −D̂ĜT
12ū(0), (Ĝ11 + λ(3)Ir)ū(0) = 0, (2.32)

where D̂ = (Λ̄m−r − s0Im−r)−1.
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It follows from the last equation in (2.32) that r eigenvalues of the r by r skew-symmetric matrix
Ĝ11 = T̃T

r GT̃r are the coefficients λ(3) in expansion (2.3) with λ(1) = 0 and λ(2) = s0. If this matrix
Ĝ11 is non-zero, then it has at least one pair of conjugate purely imaginary eigenvalues ± ig, with
g > 0, so that the matrix K + εN has at least one complex conjugate pair of eigenvalues of the form

μ(ε) = λ0 + ε2s0 ± iε3g + o(ε3). (2.33)

Thus, in view of (2.33), since g �= 0, again according to lemma 2.4, we have the following result.

Result 2.10. If N̂11 = 0 and Ĝ11 = T̃T
r GT̃r �= 0, then the system described by equation (1.4) is unstable

by flutter for arbitrarily small non-zero values of |ε|.

If Ĝ11 = T̃T
r GT̃r = 0, then it follows from (2.32) that λ(3) = 0. In this case, from (2.21) for r = 4, we

get

(S − λ(2)Im)w̄(2) = N̂12DN̂22w̃(2) − λ(2)N̂12Dw̃(1) + λ(4)w̄(0),

which upon on setting λ(2) = s0 and using (2.13) and (2.18) becomes

(S − s0Im)w̄(2) = N̂12DN̂22DN̂T
12︸ ︷︷ ︸

G

w̄(1) − (s0N̂12D2N̂T
12 + N̂12DN̂22DN̂22DN̂T

12)︸ ︷︷ ︸
R

w̄(0) + λ(4)w̄(0)

= Gw̄(1) − Rw̄(0) + λ(4)w̄(0). (2.34)

Here, we have denoted the m by m symmetric matrix

R = s0N̂12D2N̂T
12 + N̂12DN̂22DN̂22DN̂T

12 = s0N̂12D2N̂T
12 + N̂12(DN̂22)2DN̂T

12. (2.35)

Writing w̄( j) = T̃[ū( j)T ũ( j)T]T, j = 1, 2, 3, premultiplying (2.34) by T̃T, and noting from (2.32) that
ũ(0) = 0, we get[

0 0
0 Λ̄m−r − s0Im−r

][
ū(2)

ũ(2)

]
=

[
0 Ĝ12

−ĜT
12 Ĝ22

][
ū(1)

ũ(1)

]
−

[
R̂11 R̂12

R̂T
12 R̂22

]
︸ ︷︷ ︸

T̃TRT̃

[
ū(0)

0

]
+ λ(4)

[
ū(0)

0

]
, (2.36)

where we have denoted

R̂11 = R̂T
11 = T̃rRT̃r, R̂12 = T̃rRT̃m−r, and R̂22 = T̃m−rRT̃m−r. (2.37)

Taking the first r equations in (2.36) and using (2.32), we get

(Ĝ12D̂ĜT
12 + R̂11 − λ(4)Ir)ū(0) = 0, (2.38)

and taking the last (m − r) equations in (2.36) and again using (2.32) we get

ũ(2) = −D̂ĜT
12ū(1) − D̂(Ĝ22D̂ĜT

12 + R̂T
12)ū(0). (2.39)

From (2.38), the r eigenvalues of the r by r symmetric matrix S1 = Ĝ12D̂ĜT
12 + R̂11 are the

coefficients λ(4) in expansion (2.3) with λ(1) = 0, λ(2) = s0 and λ(3) = 0. Then

μi(ε) = λ0 + ε2s0 + ε4λ
(4)
i + o(ε4), i = 1, . . . , r, (2.40)

are the eigenvalues of the matrix K + εN. Thus, in view of lemma 2.4, we have the next assertion.

Result 2.11. If N̂11 = 0, Ĝ11 = 0, and all eigenvalues of the r by r symmetric matrix

S1 = ST
1 = Ĝ12D̂ĜT

12 + R̂11, (2.41)

where Ĝ12, D̂ and R̂11 are determined by (2.29), (2.32), (2.35) and (2.37), respectively, are distinct, then
the system described by equation (1.4) is stable for arbitrarily small values of |ε|.
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In the following step, we assume that the symmetric matrix S1 has a single eigenvalue s10 of
multiplicity p. In this case, (2.38) becomes

(S1 − s10Ir)ū(0) = 0, (2.42)

while from (2.21) for r = 5, we get setting λ(1) = λ(3) = 0, λ(2) = s0 and λ(4) = s10

(S − s0Im)w̄(3) = N̂12DN̂22w̃(3) − s0N̂12Dw̃(2) + s10w̄(1) + λ(5)w̄(0). (2.43)

Using (2.22), we get w̃(3) = DN̂T
12w̄(2) − DN̂22w̃(2) + s0D2N̂T

12w̄(0), while w̃( j), j = 1, 2, are given in
(2.13) and (2.18). In view of these expressions, (2.43) becomes

(S − s0Im)w̄(3) = N̂12DN̂22DNT
12︸ ︷︷ ︸

G

w̄(2) − [s0N̂12D2N̂T
12 + N̂12(DN̂22)

2
DN̂T

12]︸ ︷︷ ︸
R

w̄(1)

+ [s0N̂12D(DN̂22D + N̂22D2)N̂T
12 + N̂12(DN̂22)

3
DN̂T

12]︸ ︷︷ ︸
Q

w̄(0) + s10w̄(1) + λ(5)w̄(0)

= Gw̄(2) − Rw̄(1) + Qw̄(0) + s10w̄(1) + λ(5)w̄(0), (2.44)

in which the m by m skew-symmetric matrix

Q = −QT = s0N̂12D(DN̂22 + N̂22D)DN̂T
12 + N̂12(DN̂22)3DN̂T

12. (2.45)

Once again writing w̄( j) = T̃[ū( j)T ũ( j)T]T, j = 1, 2, 3, premultiplying (2.44) by T̃T, and noting from
(2.32) that ũ(0) = 0, we get

[
0 0
0 Λ̄m−r − s0Im−r

] [
ū(3)

ũ(3)

]
=

[
0 Ĝ12

−ĜT
12 Ĝ22

] [
ū(2)

ũ(2)

]
−

[
R̂11 R̂12

R̂T
12 R̂22

] [
ū(1)

ũ(1)

]
+

[
Q̂11 Q̂12

Q̂T
12 Q̂22

]
︸ ︷︷ ︸

T̃TQT̃

[
ū(0)

0

]

+ s10

[
ū(1)

ũ(1)

]
+ λ(5)

[
ū(0)

0

]
= 0.

Taking the first r equations, we get

Ĝ12ũ(2) − R̂11ū(1) − R̂12ũ(1) + Q̂11ū(0) + s10ū(1) + λ(5)ū(0) = 0,

where Q̂11 = T̃T
r QT̃r. Upon using (2.32) and (2.39) for ũ(1) and ũ(2)

, we get

(Ĝ12D̂ĜT
12 + R̂11︸ ︷︷ ︸
S1

−s10Ir)ū(1) = [Q̂11 − Ĝ12D̂(Ĝ22D̂ĜT
12 + R̂T

12) + R̂12D̂ĜT
12︸ ︷︷ ︸

Ω

+λ(5)Ir]ū(0),

or,

(S1 − s10Ir)ū(1) = [Ω + λ(5)Ir]ū(0), (2.46)

where

Ω = −ΩT = Q̂11 − Ĝ12D̂(Ĝ22D̂ĜT
12 + R̂T

12) + R̂12D̂ĜT
12, and Q̂11 = T̃T

r QT̃r. (2.47)

Note that the ’structure’ of the two equations (2.42) and (2.46) is the same as the structure of the
two equations (2.26) and (2.27). Thus, by following a procedure similar to that adopted earlier, we
will be led ultimately to a result analogous to that given in (2.32). We now follow this procedure
that was used earlier.

Let ˜̃T = [ ˜̃Tp| ˜̃Tr−p] be an r by r orthogonal matrix, where the r × p submatrix ˜̃Tp contains p

eigenvectors of S1 corresponding to the multiple eigenvalue s10, and the r × (r − p) submatrix ˜̃Tr−p
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contains the remainder r − p of the eigenvectors of S1. The matrix ˜̃T transforms matrices (2.41) and
(2.47) to the forms

Ŝ1 = ˜̃TTS1
˜̃T = diag(s10Ip, ¯̄Λr−p), Ω̂ = ˜̃TTΩ

˜̃T =
[

Ω̂11 Ω̂12

−Ω̂T
12 Ω̂22

]
, (2.48)

where the diagonal matrix ¯̄Λr−p = ˜̃TT
r−pS1

˜̃Tr−p and Ω̂11 = ˜̃TT
p Ω

˜̃Tp, Ω̂12 = ˜̃TT
p Ω

˜̃Tr−p, Ω̂22 =
˜̃TT

r−pΩ
˜̃Tr−p. Substituting ū( j) = ˜̃T[v̄( j)T ṽ( j)T]T, where v̄( j) and ṽ( j) are p and (r − p) dimensional

vectors, respectively, in equations (2.42) and (2.46) and premultiplyng these by ˜̃TT we get
(analogous to the result in (2.32))

ṽ(0) = 0, ṽ(1) = − ˆ̂DΩ̂T
12v̄

(0), (Ω̂11 + λ(5)Ip)v̄(0) = 0, (2.49)

where ˆ̂D = ( ¯̄Λr−p − s10Ir−p)−1.
It follows from the last equation in (2.49) that p eigenvalues of the p by p skew-symmetric

matrix Ω̂11 = ˜̃TT
p Ω

˜̃Tp are the coefficients λ(5) in expansion (2.3) with λ(1) = 0, λ(2) = s0, λ(3) = 0 and

λ(4) = s10. If this matrix is non-zero, then it has at least one pair of conjugate purely imaginary
eigenvalues ± iω with ω > 0, so that the matrix K + εN has at least one complex conjugate pair of
eigenvalues of the form

μ(ε) = λ0 + ε2s0 + ε4s10 ± iε5ω + o(ε5). (2.50)

This leads to the following result.

Result 2.12. If N̂11 = 0, Ĝ11 = 0 and Ω̂11 = ˜̃TT
p Ω

˜̃Tp �= 0 then the system described by equation (1.4) is
unstable by flutter for arbitrarily small non-zero values of |ε|.

If Ω̂11 = ˜̃TT
p Ω

˜̃Tp = 0, the above procedure can be continued in the same manner.
Note that at every step in the above reduction procedure, a matrix of simple structure
(more precisely, symmetric or skew-symmetric) appears, which ensures Taylor’s expansions of
eigenvalues in ε. By contrast, when the perturbation matrix is neither symmetric nor skew-
symmetric, fractional powers of ε may appear, as shown in [15].

Remark 2.13. If N̂11 = 0 and N̂12 = 0, it is clear that λ0 remains a semi-simple eigenvalue of
multiplicity m of the matrix Λ̂ + εN̂ and, consequently, the system described by equation (1.4) is
stable for arbitrarily small values of |ε|.

Obviously, in this case, the system in normal coordinates is decoupled into two subsystems,
one of which is an m-dimensional stable purely potential system independent of ε and the other
is an (n–m)-dimensional circulatory system that is stable for sufficiently small |ε|.

Observe that if N̂11 = 0, then the first non-zero coefficient λ(2j−1) in expression (2.3) is an
eigenvalue of some skew-symmetric matrix, but if in addition N̂22 = 0, it is the zero matrix, while
λ(2j) are the eigenvalues of some symmetric matrices.
Therefore, we can state the following.

Result 2.14. If N̂11 = 0 and N̂22 = 0, then the system described by equation (1.4) is stable for arbitrarily
small values of |ε|.

Remark 2.15. This result is also valid when all diagonal elements of the matrix Λn−m are not
different.

A direct consequence of the results 2.5 and 2.14 is the following assertion.

Corollary 2.16. Let m = n – 1. Then the system described by equation (1.4) is unstable for arbitrarily
small non-zero values of |ε| if and only if N̂11 �= 0.

We note that this result also follows from [10, see Theorem 3].
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Remark 2.17. Suppose that ω = 0 in (2.50), i. e. Ω̂11 = 0, and that the system has a flutter mode
corresponding to λ0. It is easy to see that the rate of exponential growth of the flutter mode is
γ = c|ε|7 + o(|ε|7), c = const > 0, and, consequently, in a large time interval (approx. ε−6), we have
a small increase (∼ε) in the amplitude of the oscillations. Therefore, from a practical (engineering)
point of view, it can be assumed that the above results close the problem posed in §2.

Example 2.18. Let

K = diag(I2, 3, 2, 9), N =
[

νJ2 N12
−NT

12 N22

]
, (2.51)

where ν ∈ 	 and

J2 =
[

0 1
−1 0

]
, N12 =

[
2 0 −4
0 2 0

]
, N22 =

⎡
⎢⎣ 0 −√

11/2 0√
11/2 0 α

0 −α 0

⎤
⎥⎦ , α ∈ 	. (2.52)

For this example n = 5, λ0 = 1 and m = 2. If ν �= 0, then according to result 2.5, the system (1.4),
(2.51), (2.52) is unstable by flutter. Let now ν = 0. Then, it is easy to see that D = diag(2, 1, 8) and
the matrix (2.19) is S = 4I2, i.e. the matrix S has the double eigenvalue s0 = 4. The matrix (2.28)
becomes G = (α − √

11)J2. Consequently, if α �= √
11, then in view of result 2.10, instability follows.

Finally, if α = √
11, we get that the symmetric matrix (2.41) becomes S1 = 5I2, and it clearly has

the double eigenvalue s10 = 5. Further, the matrix (2.47) becomes Ω = −3/2
√

11J2, and according
result 2.12 again instability follows.

Thus, if |ε| is sufficiently small, then the system (1.4), (2.51)−(2.52) is unstable by flutter for
every value of the real parameters α and ν.

3. Systems with a small number of degrees of freedom
In this section for n < 5, based on the results in §2, we will describe all skew-symmetric matrices N,
such that circulatory forces determined by εN, where the parameter ε is arbitrarily small, cause
flutter instability(stability) in potential systems with multiple eigenvalues. By flutter instability
(stability), we mean here instability (stability) caused by arbitrarily small non-zero values of the
parameter |ε|. For simplicity, we assume that the system (1.4) are described in normal coordinates
so that the potential matrices are diagonal (K = Λ̂) and N = N̂. Obviously, if m = n, then, according
to Merkin’s theorem, the flutter instability follows for every non-zero N. Thus, in what follows
we suppose that m < n.

(a) n= 3,m= 2
In this case,

Λ̂ = diag(λ0I2, λ3), N̂ =
⎡
⎣ νJ2 N̂12

−N̂T
12 0

⎤
⎦ , (3.1)

where

J2 =
[

0 1
−1 0

]
,

and 0 < λ0 �= λ3 ∈ 	, ν ∈ 	 and N̂12 is a real 2 × 1 matrix. It follows from result 2.5 and corollary 2.16
that the systems (1.4) and (3.1) is unstable by flutter if and only if ν �= 0.
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(b) n= 4
(i)m= 3

In this case,

Λ̂ = diag(λ0I3, λ4), N̂ =
⎡
⎣ N̂11 N̂12

−N̂T
12 0

⎤
⎦ , (3.2)

where 0 < λ0 �= λ4 ∈ 	, N̂11 is 3 × 3 skew-symmetric and N̂12 is 3 × 1 matrix. According to result
2.5 and corollary 2.16, the system (1.4), (3.2) is unstable by flutter if and only if N̂11 �= 0.

(ii)m= 2

(a) The case of a single multiple eigenvalue
In this case,

Λ̂ = diag(λ0I2, λ3, λ4), N̂ =
⎡
⎣ ν1J2 N̂12

−N̂T
12 ν2J2

⎤
⎦ , (3.3)

where 0 < λ0 �= λ3 �= λ4 ∈ 	,ν1, ν2 ∈ 	 and N̂12 is a real 2 × 2 matrix.
If ν1 �= 0, then, in view of result 2.5, the system (1.4), (3.3) is unstable by flutter.
Let ν1 = 0. Then, it is easy to show that the matrix S = N̂12DN̂T

12, where D = diag[1/(λ3 − λ0),
1/(λ4 − λ0)], has a double eigenvalue if and only if one of the two following conditions holds:

(1) (λ3 − λ0)(λ4 − λ0) > 0, N̂12 =
[

a ∓ηb
b ±ηa

]
(3.4)

and

(2) (λ3 − λ0)(λ4 − λ0) < 0, N̂12 =
[

a ±ηa
b ±ηb

]
. (3.5)

Here η = √|λ4 − λ0/λ3 − λ0| and a, b ∈ 	. If both conditions (3.4) and (3.5) fail, then the symmetric
matrix S has distinct eigenvalues, and, according to result 2.8, the system (1.4), (3.3) is stable.
Under conditions (3.4), the matrix S has the double eigenvalue s0 = (a2 + b2)/(λ3 − λ0), and the
skew-symmetric matrix G determined by (2.28) is

G = ± ν2η(a2 + b2)
(λ3 − λ0)(λ4 − λ0)

J2.

From this and in view of result 2.10, it follows that the system is unstable by flutter if
ν2(a2 + b2) �= 0. However, if ν2(a2 + b2) = 0, then according to result 2.14 and remark 2.13, the
system is stable.

On the other hand, under conditions (3.5) we have S = 0, G = 0, R = 0 and so on, which indicate
that λ0 remains a double semi-simple eigenvalue. Indeed, it is easy to confirm that in this case the
matrix (Λ̂ + εN̂) has double eigenvalue λ0 with corresponding eigenvectors of the forms

w( j) =
[

u( j)

ε(D + εν2J2)−1N̂T
12u( j)

]
, j = 1, 2,

where u(1) and u(2) are linearly independent two-dimensional real vectors. Consequently, under
conditions (3.5), the system (3.3) is stable.

Thus, the system (1.4), (3.3) is unstable by flutter if and only if either ν1 �= 0 or the conditions
(3.4) hold and ν2(a2 + b2) �= 0.
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(b) The case of two multiple eigenvalues
In this case,

Λ̂ = diag(λ1I2, λ2I2), N̂ =
⎡
⎣ ν1J2 N̂12

−N̂T
12 ν2J2

⎤
⎦ , (3.6)

where 0 < λ1 �= λ2 ∈ 	, ν1, ν2 ∈ 	 and N̂12 is a real 2 × 2 matrix. It follows from (3.6), in view of
remark 2.7, that system (1.4), (3.6) is unstable by flutter if either ν1 �= 0 or ν2 �= 0. If ν1 = ν2 = 0,
then according to result 2.14, the system (1.4), (3.6) is stable. Note that this is in accordance with a
result of [10, Theorem 3].

4. Conclusion
This paper addresses the question of the stability of a stable potential system to infinitesimal
circulatory perturbations. A stable potential system that has one multiple eigenvalue (with
multiplicity greater than 1) is considered, the other eigenvalues being all distinct. Such a situation
is not uncommon in large-scale engineered multi-degree-of-freedom (MDOF) systems such as
ships, spacecraft, aircraft and building structures. The results obtained herein are therefore
important from a practical standpoint since they can play an important role in our understanding
of complex physical phenomena and in the development of safer engineering designs.

Using a perturbation expansion, the bifurcations of the multiple eigenvalues under
vanishingly small circulatory perturbations are investigated. While it is often believed that all
such circulatory perturbations make the system unstable, it is shown that this may not necessarily
be true. This is because most perturbation studies to date that have dealt with circulatory
perturbations deal with linear perturbations, and the perturbation expansion stops at the linear
term in the so-called small perturbation parameter, ε.

The detailed investigation carried out here on general MDOF systems in which the
perturbation expansion is continued well beyond the linear perturbation regime shows that
the question of stability is much subtler than was previously envisioned, and a fairly complex
stability picture of potential systems under infinitesimal circulatory perturbations emerges. The
explicit results provided show a somewhat aesthetic alternation in the ’structure’ of stability
and instability which is dependent on the nature of the circulatory perturbatory matrix and its
interaction with all the frequencies of vibration of the potential system. It is to emphasize this
alternating character of the structure of the stability (and instability) that the words stability and
instability are both included in the title of the paper.

While the paper principally focuses on MDOF systems that may be modelled by hundreds
or thousands of degrees of freedom, the more detailed approach developed here also yields new
insights into their lower dimensional counterparts, and a near-complete stability analysis for such
systems is consequently obtained. While such low-dimensional systems are rare in the description
of natural and engineered systems—unless there are significant symmetries and/or constraints
on the system—reduced-order models are often used in obtaining a preliminary understanding
of physical phenomena and in the initial design phases of large-scale engineered MDOF systems.

Compared with earlier perturbation studies, the treatment undertaken herein is much
more comprehensive and provides several new results that appear to bring us closer to a
thorough understanding of the stability of potential systems to infinitesimal circulatory positional
perturbations, an area of considerable interest to physicists, mathematician and engineers. In
order to illustrate the current state of our knowledge and its improvement through the theory
developed herein, several examples are provided.
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